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ABSTRACT
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The intervention variable is a legislative crackdown on speeding
offenders in Connecticut, whi,:h was claimed to have produced a
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The quasi-experimental time-series design noted by Campbell and

Stanley (1963) has been examined by a series of authors in the last few

years. Box and Tiao (1965) derived a statistical method for estimating

intervention effects in time-series using a discrete stochastic model, the

integrated-moving averages (IMA) process.2 Campbell and Ross (1968) dis-

cussed su,..11 an analysis applied to time-series of traffic fatalities in

Connecticut between 1951 and 1960. Glass, Willson, and Gottman (1972)

considered the methodology to date and produced an initial attempt to

organize the extant work on the time-series experiment problem. The

present paper reports some additional theoretical work and provides a

methodological example in which some time-series variables act as covariates

on a dependent variable.

Box and Tiao (1965) utilized the simplest non-stating stochastic IMA

r'1"1 process, IMA (1,1):

z
t

- z
t-1

= -8a
t-1

+ a
t'

(1)

C1Z where z
t
is an observation of the dependent variable at time t, a

t
is an

unobserved random variable uncorrelated over time, and A is a coefficient of

autocorrelation which takes values between -1 and 1. Nonzero values of

ot-t--121

1
Paper presented at the Annual Meeting of the American Educational

Em4 Research Association, Chicago, Illinois, April 19, 1974.

2
See Box and Jenkins (1970).
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produce the characteristic autocorrelation of z. found in time-series. If

observations of z were not correlated, ordinary parametric statistics could

be used to evaluate interventions in a time-series. Scheffe (1959) and

others have pointed out the serious effects of autocorrelation upon sampling

distributions of t-statistics, making usual normal parametric tests unusable.

Box and Tiao (1965) derived a method for transforming away the autocorrela-

tion. They noted that the mofiel in (1), may be rewritten as

t-1
z
t
= L + (1 - 0) E a

i
+ a

t'
1=1

(2)

where L is a location parameter for the first observation (time-series of

this sort do not have expected values). The variable z was shown to be

transformable to

Yt zt zt -1 "t-1' (3)

which is in the form of the general linear model (let -0 = 1 - X),

or

Yt = (1 X)t-11, + at,

y
t

= X$ + a.

(4)

(5)

With suitable distribuConal assumptions about a (normal, independent and

identically distributed with finite variance), the $ is estimable in terms

of a design matrix X and observation Y under least-squares estimation. If

the intervention of the time-series experiment, 6, is included with equation

(2) after n
1
observations,

t-1
zt =L+XEa + 6 + a

t'
i=1

(6)



Then equation (4) becomes

t-1 t-n1-1
y
t
= (1 - A) L + (1 - A) d + a

t
,

3

(7)

and both L and (5 may be estimated by method of least-squares. The value for

A has not been specified. Box and Tiao (1965) suggested that an iterative

method be used (calculate estimates for value of A between the tFeoretical

limits 0 and 2), using a minimum variance criteria or a Bayesian maximum

likelihood function on the residual variance.

Campbell and Ross (1968) discussed the time-series analysis of data on

traffic fatalities in Connecticut between 1951 and 1960. An intervention

effect was hypothesized to have occurred on January 1, 1956, based upon a

"crackdown" on speeding offenders ordered by Governor Abraham Ribicoff of

the State of Connecticut on December 23, 1955. The Governor's action required

suspension of driving licenses for persons convicted of speeding offenses.

First offenders lost their licenses for thirty days, second offenders lost

theirs for sixty days, and third offenders had their licenses suspended

indefinitely. Inspection of the traffic fatality rate per 100,000,000

driver miles shows a large drop in the rate between December, 1955, and

January, 1956 figures. This was cited by the Connecticut State Administra-

tion as evidence of the effectiveness of the "crackdown" action.

Analysis of the Connecticut data in which seasonal variations were

removed showed a significant difference from zero for the hypothesized inter-

vention. Similar data for nearby states--Massachusetts, Rhode Island, New

York, and New Jersey--were examined, and similar drops in level were noted

in Massachusetts, New York, and New Jersey. This evidence was presented as

disconfirmation of the hypothesis that the crackdown produced a significant

drop in the level of Connecticut fatalities per 100,000,000 driver miles (see

Glass, 1968).
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Glass, Willson, and Gottman (1972) noted that the analysis of multiple

time-series may be considered a multiple-group, multiple-intervention design.

A multiple comparisons analysis of the estimated intervention effects observed

in the five states was prelented. A planned orthogonal comparison between

the Connecticut change in level and the mean of the changes in level for the

other four states results in a t-statistic whose probability of occurrence

by chance is .074. The data were seasonally adjusted by subtracting the

monthly average for ten years from each month's value.

Several difficulties appear in this analysis. First, it is not clear

that the same problem is being addressed when seasonal adjustments are made.

Although traditional in economics, the series observed after adjustment are

not the same as those observed before in terms of A (see Willson, 1972).

Also, the common design question arises: does one assign a variable as a

factor in the design or covary on the variable? Initial differences on the

variable are cited as a reason for ANCOVA. Willson (1973) derived a statis-

tical treatment for covariation in time-series. The basic assumption is that

the random variable a is not truly random but is correlated with the covariate

c. This may be checked statistically. If significant correlation is observed,

a is decomposed into two components,

at = 4(ct - + et, (8)

when r is the observed mean of c prior to intervention, and in which e is now

identically, independently distributed (normality is assumed for estimation

of confidence intervals). The result is that instead of equation (7),

t-1 t-n1-1
yt = (1 - A) L + (1 - A) 6 + ("ct + et' (9)

so that now L, 6, and 0 are estimated. Multiple covariates may be added much

as in multiple ANCOVA. With this procedure, the Campbell and Ross data were

reanalyzed as an ANCOVA problem.
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The Rhode Island data are ignored since a good case may be made for

noncomparability of population and miles driven with respect to the other

states, resulting in unstable estimates for the states. The original data

are examined without removal of the seasonal variation. The data for three

states are graphed in Figure 1.
3

The seasonal components are hypothesized

not to affect estimations since regression coefficients and the least-squares

procedures are based on deviations from the mean level, which will be matched

for different variables on the seasonal component.

The intercorrelation matrix of lag zero first differences
4

is presented

in Table 2 for the raw data on fatality rates per 100,000,000 driver miles

for the four states under consideration. Zero lag is chosen since it may

be assumed that the causes of traffic fatalities operate simultaneously for

all the states in a similar fashion.

TABLE 1: Intercorrelation Matrix of Fatalities Per 100,000,000
Driver Miles for Four States for Lag Zero First Difference Data.

Connecticut Massachusetts New York New Jersey

Connecticut 1.00 .22 .18 .38

Massachusetts .22 1.00 .15 .22

New York .18 .15 1.00 .56

New Jersey .38 .22 .56 1.00

3
New York was ignored; explanation is given in the next paragraph.

4
Variables may be regressed on time-lagged data. Here the correlations

showed no significant lagged correlations so that regression was contempora-
neous in time. First differences (zt - zt -1) are calculated because the
model is an IMA (1,1) (Campbell and Ross, 1968).
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TABLE 2 : Estimates of Parameters for Analysis of Connecticut Traffic
Fatalities per 100,000,000 Driver Miles With and Without

Massachusetts and New Jersey Traffic Fatalities per
100,000,000 Driver Miles as Covariates.

Pre-Intervention Data: 60 Observations by Month (January, 1951 -
December, 1955).

Post-Intervention Data: 48 Observations by Month (January, 1956 -
December, 1960).

With Covariate Without Covariate

5.i z = 0z °

= 3.39 1..1, = 3.57

SE(1) = .11 SEa.) = .12

8 = -.22 8 = -.61*

SW) = .17 SE(8) = .18

...2
.522 a'Connlonn .831

Il

... 2
(rMass

.790

C*

2
N.J. = . 864

`Mass '399*

SE(Mass) '09°

(1)N.J. = .254*

SE($N.3..) = .106

* (p < .05 for significance from zero).
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The variables associated with New Jersey and Massachusetts are most

highly correlated uith the Connecticut variable, and the two are chosen for

the analysis as covariates.5 The estimates of parameters with and without

covariates are given in Table 2.

Comparison of the mean levels with and without covariates shows that

the two estimates are similar in value. The change in level due to the

Ribicoff intervention is significantly different from zero in the Connecticut

data without covariates, but the intervention is reduced to a nonsignificance

when covariates are included. The regression coefficients for New Jersey

and Massachusetts fatality rates are both significantly different from zero

< .05) when the covariates are included in the analysis.

The main point is that the intervention is reduced to nonsignificance

with the inclusion of the covariates. This is the same conclusion reached

by Campbell and Ross (1968), and by Glass (1968), but the conclusion is

based upon simultaneous mathematical analysis of the four-variable system

(independeAt, dependent, and two covariates) rather than upon separate

analyses. This procedure seems preferable to all approach like multiple

comparisons analysis when the units of observation cannot be selected

randomly. This parallels the desirability of using analysis of covariance

over multifacet analysis of variance when randomization is not.possible and

groups may be initially different. Also, no manipulation of the series in

terms of seasonal adjustment is necessary.

5
As in ANCOVA, one desires covariates highly correlated with the

dependent variable and not with each other.
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